A self-tuning Firefly algorithm to tune the parameters of Ant Colony System (ACSFA)

نویسندگان

  • M. K. A. Ariyaratne
  • T. G. I. Fernando
  • Sunethra Weerakoon
چکیده

Ant colony system (ACS) is a promising approach which has been widely used in problems such as Travelling Salesman Problems (TSP), Job shop scheduling problems (JSP) and Quadratic Assignment problems (QAP). In its original implementation, parameters of the algorithm were selected by trial and error approach. Over the last few years, novel approaches have been proposed on adapting the parameters of ACS in improving its performance. The aim of this paper is to use a framework introduced for self-tuning optimization algorithms combined with the firefly algorithm (FA) to tune the parameters of the ACS solving symmetric TSP problems. The FA optimizes the problem specific parameters of ACS while the parameters of the FA are tuned by the selected framework itself. With this approach, the user neither has to work with the parameters of ACS nor the parameters of FA. Using common symmetric TSP problems we demonstrate that the framework fits well for the ACS. A detailed statistical analysis further verifies the goodness of the new ACS over the existing ACS and also of the other techniques used to tune the parameters of ACS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem

Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...

متن کامل

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

Fuzzy Controller Design for Ball and Beam System with an Improved Ant Colony Optimization

In this paper, an improved ant colony optimization (ACO) algorithm is proposed to enhance the performance of global optimum search. The strategy of the proposed algorithm has the capability of fuzzy pheromone updating, adaptive parameter tuning, and mechanism resetting. The proposed method is utilized to tune the parameters of the fuzzy controller for a real beam and ball system. Simulation and...

متن کامل

Optimal Fuzzy Supervised PID Controller using Ant Colony Optimization Algorithm

PID controllers are the well known and most widely used controllers in the industries. The reason behind this is because of its simple structure and reliability. Nonetheless when the plant to be controlled is highly non linear or is subjected to disturbances or we have less knowledge about it, under these conditions poor performance is obtained when we are using fixed parameter PID as controlle...

متن کامل

Offline Auto-Tuning of a PID Controller Using Extended Classifier System (XCS) Algorithm

Proportional + Integral + Derivative (PID) controllers are widely used in engineering applications such that more than half of the industrial controllers are PID controllers. There are many methods for tuning the PID parameters in the literature. In this paper an intelligent technique based on eXtended Classifier System (XCS) is presented to tune the PID controller parameters. The PID controlle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1610.08222  شماره 

صفحات  -

تاریخ انتشار 2016